Given differential equation:
y dx+xlog(yx)dy−2x dy=0
dy[2x−xlog(yx)]=y dx
dydx=yx(2−log(yx))
dydx=yx2−log(yx)
If F(λx,λy)=λF(x,y), then the differential equation is homogeneous.
Now,
Substituting F(x,y)=yx2−log(yx),
F(λx,λy)=λyλx2−log(λyλx)
F(λx,λy)=yx2−log(yx)=F(x,y)
Hence, the differential equation is
homogeneous.
Given differential equation :
y dx+xlog(yx)dy−2x dy=0
dydx=yx2−log(yx) ...(i)
Let y=vx
Differentiating both sides w.r.t.′x′, we get
dydx=d(vx)dx
Using product rule : (uv)′=u′v+uv′
dydx=dvdxx+vdxdx
dydx=dvdxx+v
Substituting the value of dydx and y=vx in
(i), we get
v+x dvdx=vxx2−log(vxx)
v+x dvdx=v2−logv
x dvdx=v2−logv−v
xdvdx=v−2v+vlogv2−logv
xdvdx=vlogv−v2−logv
2−logvvlogv−vdv=dxx
Integrating both sides, we get
∫2−logvvlogv−vdv=∫dxx
∫2−logv−v(1−logv)dv=log|x|+logc
∫1+1−logv−v(1−logv)dv=log|x|+logc
∫dv(−v)(1−logv)−∫1vdv
=log|x|+logc
∫dvv(logv−1)−log|v|=log|x|+logc
...(ii)
Substituting t=logv−1,
dt=1vdv
Substituting in (ii),
∫dtt−log|v|=log|x|+logc
log|t|−log|v|=log|x|+logc
Substituting value of t, we get
log(logv−1)−logv=logx+logc
log(logv−1)=logx+logc+logv
log(logv−1)=logcxv
(∵loga+logb=logab)
logv−1=cxv
Substituting v=yx, we get
logyx−1=cy
Hence, the required general solution is
logyx−1=cy