wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the differential equation
y dx+xlog(yx)dy2x dy=0
is homogenous and solve it.

Open in App
Solution

Given differential equation:
y dx+xlog(yx)dy2x dy=0

dy[2xxlog(yx)]=y dx

dydx=yx(2log(yx))

dydx=yx2log(yx)

If F(λx,λy)=λF(x,y), then the differential equation is homogeneous.

Now,

Substituting F(x,y)=yx2log(yx),

F(λx,λy)=λyλx2log(λyλx)
F(λx,λy)=yx2log(yx)=F(x,y)

Hence, the differential equation is
homogeneous.

Given differential equation :
y dx+xlog(yx)dy2x dy=0
dydx=yx2log(yx) ...(i)
Let y=vx

Differentiating both sides w.r.t.x, we get
dydx=d(vx)dx
Using product rule : (uv)=uv+uv

dydx=dvdxx+vdxdx
dydx=dvdxx+v

Substituting the value of dydx and y=vx in
(i), we get
v+x dvdx=vxx2log(vxx)
v+x dvdx=v2logv

x dvdx=v2logvv
xdvdx=v2v+vlogv2logv
xdvdx=vlogvv2logv
2logvvlogvvdv=dxx

Integrating both sides, we get
2logvvlogvvdv=dxx
2logvv(1logv)dv=log|x|+logc
1+1logvv(1logv)dv=log|x|+logc
dv(v)(1logv)1vdv
=log|x|+logc
dvv(logv1)log|v|=log|x|+logc
...(ii)

Substituting t=logv1,
dt=1vdv
Substituting in (ii),
dttlog|v|=log|x|+logc
log|t|log|v|=log|x|+logc
Substituting value of t, we get

log(logv1)logv=logx+logc
log(logv1)=logx+logc+logv
log(logv1)=logcxv
(loga+logb=logab)
logv1=cxv

Substituting v=yx, we get
logyx1=cy

Hence, the required general solution is
logyx1=cy

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon