Show that the differential equations (x−y)dydx=x+2y is homogeneous and solve it also.
OR
Find the differential equations of the family of curves (x−h)2+(y−k)2=r2, where h and k are arbitrary constants.
We have (x−y)dydx=x+2y ⇒dydx=x+2yx−y=f(x,y)say
Put x=λx,y=λy,f(λx,λy)=λx+2λyλx−λy=x+2yx−y=f(x,)
Hence the differential equations is homogenous.
Now put y=vx⇒dydx=v+xdvdx ∴v+xdvdx=x+2vxx−vx=1+2v1−v
⇒xdvdx=1+2v−v+v21−v ⇒∫1−vv2+v+1 dv=∫dxx.
Let 1 – v =A ddv[v2+v+1]+B ⇒1−v=A[2v+1]+B
On equating the coefficients of like terms, we get : A=−12,B=32
∴∫(32(v2+v+1)−1(2v+1)2(v2+v+1)) dv=∫dxx ⇒32∫1(v+12)+(√32)2 dv−12log
|v2+v+1|=log|x|
⇒32×2√3tan−1(2v+1√3)−12log∣∣y2+xy+x2x2∣∣=log|x|+C
∴√3tan−1(2y+x√3x)−12log|y2+xy+x2|=C
OR
We have (x−h)2+(y−k)2=r2…(i) ⇒2(x−h)(1−0)+2(y−k)(y−0)=0
⇒(x−h)=−(y−k)y′…(ii) ⇒−1=(y−k)y"+(y′)2
⇒−[1+(y′)2]y""=(y−k) Replacing value of (y – k) in (ii), (x – h) = [1+(y′)2]y′×y′
Substituing values of (x - h} and (y – k) in (i), we get :
([1+(y)2]y′×y′)+(−[1+(y′)2]y′)2=r2~~~~~⇒([1+(y′)2]y′2)+[1+(y′)2]2+=(ry′)2
⇒[(y′)2+1][1+(y′)2]2=(ry")2 ⇒[1+(y′)2]3y"2=r3
Hence [1+y21]3=r2y22 is the required differential equations of all circles of radius r .