The correct option is
C 32(10x−5)2+(10y−5)2=(3x+4y−1)2
25(2x−1)2+25(2y−1)2=(3x+4y−1)2
∴(2x−1)2+(2y−1)2=(3x+4y−15)2
4(x−12)2+4(y−12)2=14(3x+4y−15)2
(x−12)2+(y−12)2=14(3x+4y−15)2
By observing equation (1), we infer that
√(x−12)2+(y−12)2=12(3x+4y−15)
Centre of ellipse: (12,12)
(e2=1−b2a2)
Equation of directrix =(3x+4y−1=0)
Also d (Centre, directrix) =3(12)+4(12)−15
=52+15=12
∴a+ae=12;a+a2=12
∴3a2=12;a13
1−b2a2=14;b2a2=34;b=1√12
Length =2b2a=2(12)×11/3=12