The equation of the circle is x2+y2=a2
Let the points the line meets circle be,
A(acosθ1,asinθ1) and B(acosθ2,asinθ2)
Given these points are at distanc 'd' from (x1,y1)
⇒(x1−acosθ1)2+(y1−asinθ1)2=(x1−acosθ2)2+(y2−asinθ2)2=d2...(1)
⇒x21−2ax1cosθ1+a2cos2θ21+y21+a2sin2θ21
−2ay1sinθ1=x21−2ax1cosθ2+a2cos2θ2+y21
−2ay1sinθ2+a2sin2θ2
x1cosθ1+y1sinθ1=y1sinθ2+x1cosθ2
⇒sinθ2−sinθ1cosθ2−cosθ1=−x1y1...(2)
The equation of the line joining A and B is
(y−asin2)=asinθ2−asinθ1acosθ2−acosθ1(x−acosθ2)
⇒(y−asinθ2)=−x1y1(x−acosθ2)
⇒y1y+xx1−y1asinθ2−ax1cosθ2=0
⇒xx1+yy1+yy1+(x21−2ax1cosθ2+a2cos2θ22)
+(y21−2ay1sinθ2+a2sin2θ22))−(x21+y212)−a22=0
⇒xx1+yy1+d22−a2=0