wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the equation of a straight line meeting the circle x2+y2=a2 in two points at equal distance 'd' from a point (x1,y1) on its circumference is xx1+yy1a2+(d22)=0.

Open in App
Solution

The equation of the circle is x2+y2=a2
Let the points the line meets circle be,
A(acosθ1,asinθ1) and B(acosθ2,asinθ2)
Given these points are at distanc 'd' from (x1,y1)
(x1acosθ1)2+(y1asinθ1)2=(x1acosθ2)2+(y2asinθ2)2=d2...(1)
x212ax1cosθ1+a2cos2θ21+y21+a2sin2θ21
2ay1sinθ1=x212ax1cosθ2+a2cos2θ2+y21
2ay1sinθ2+a2sin2θ2
x1cosθ1+y1sinθ1=y1sinθ2+x1cosθ2
sinθ2sinθ1cosθ2cosθ1=x1y1...(2)
The equation of the line joining A and B is
(yasin2)=asinθ2asinθ1acosθ2acosθ1(xacosθ2)
(yasinθ2)=x1y1(xacosθ2)
y1y+xx1y1asinθ2ax1cosθ2=0
xx1+yy1+yy1+(x212ax1cosθ2+a2cos2θ22)
+(y212ay1sinθ2+a2sin2θ22))(x21+y212)a22=0
xx1+yy1+d22a2=0

1149107_1109752_ans_b2708bca4e4840ec9ca83407fc2dee2e.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition and Standard Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon