S1:x2+y2+13x−13y=0
S2:2x2+2y2+4x−7y−25=0
Equation of family of circles passing through points of intersection of S1 & S2 is
S2+λS1=0
⇒x2(2+λ)+y2(2+λ)+x(13λ+4)−y(13λ+7)−25=0
Satisfying (1,1)
2+λ+2+λ+13λ+4−13λ−7−25=0
⇒λ=12
⇒ circle is 14x2+14y2+160x−163y−25=0