Show that the equation of the line passing through the origin and making an angle θ with the line y = mx + c is yx=m±tan θ1∓m tan θ
Let m1 be the slope of required line which passes through (0, 0).
Then equation of line is y - 0 = m1 (x - 0)
⇒ y=m1x . . . .(i)
Now θ is the angle between
y = mx + c and y = m1x
∴ tan θ=∣∣m1−m1+m11m∣∣ ⇒ tan θ=±m1−m1+m1m
⇒ tan θ=m1−m1+m1 or tan θ=−m1−m1+m1m
⇒ tan θ+m1m tan θ=m1−m
or tan θ+m1m tan θ=m−m1
⇒ m1(1−m tan θ)=m+tan θ
or m1(1+m tan θ)=m−tan θ
or tan θ=−m1−m1+m1m ⇒ m1=m+tan θ1−m tan θ
or m1=m−tan θ1+m tan θ⇒ m1=m±tan θ1∓m tan θ
Putting value of m1 in (i), we have
y=±m+tan θ1−m tan θ.x
⇒ yx=±m+tan θ1−m tan θ or yx=m±tan θ1∓tan θ