Given equation of straight line is x2−6xy+5y2+10x−14y+9=0.Compairing with ax2+2hxy+by2+2gx+2fy+c=0, we get
a=1,h=−3,b=5,g=5,f=−7,c=9
If the equation represents a pair of lines then,
∣∣
∣∣ahghbfgfc∣∣
∣∣=0
D=∣∣
∣∣ahghbfgfc∣∣
∣∣=∣∣
∣∣1−35 −35−7 5−79∣∣
∣∣
D=1(45−49)−(−3)(−27+35)+(5)(21−25)
D=−4+24−20
∴ D=0
Since, determinant of the given equation is zero, it represents a pair of lines.
Let θ be the acute angle between the pair lines.
∴ tanθ=∣∣∣2√h2−aba+b∣∣∣
tanθ=∣∣
∣∣2√(−3)2−1×51+5∣∣
∣∣
tanθ=∣∣∣2√9−56∣∣∣=2√46
tanθ=∣∣∣2×26∣∣∣
∴ tanθ=23
∴ θ=tan−1(23)=33.69o