Given equation of straight line is
2x2−xy−3y2−6x+19y−20=0.
Compairing with ax2+2hxy+by2+2gx+2fy+c=0, we get
a=2,h=−12,b=−3,g=−3,f=192,c=−20
If the equation represents a pair of lines then,
∣∣
∣∣ahghbfgfc∣∣
∣∣=0
D=∣∣
∣∣ahghbfgfc∣∣
∣∣=∣∣
∣
∣
∣
∣
∣∣2−12−3−12−3192−3192−20∣∣
∣
∣
∣
∣
∣∣
D=2(60−3614)−(−12)(10+572)+(−3)(−194−9)
D=2×240−3614+12×20+572−3×−19−364
D=−1212+774+1654
D=−242+2424=0
Since, determinant of the given equation is zero, it represents a pair of lines.
Let θ be the acute angle between the pair lines.
∴ tanθ=∣∣∣2√h2−aba+b∣∣∣
tanθ=∣∣
∣
∣
∣
∣
∣∣2√(12)2−2×(−3)2+(−3)∣∣
∣
∣
∣
∣
∣∣
tanθ=∣∣
∣
∣
∣∣2√14+6−1∣∣
∣
∣
∣∣
tanθ=∣∣∣−2×52∣∣∣
∴ tanθ=5
∴ θ=tan−1(5)=78.69o