Show that the following four conditions are equivalent: (i) A⊂B (ii) A−B=ϕ (iii) A∪B=B (iv) A∩B=A
Open in App
Solution
First, we have to show that (i) ⇔ (ii).
(i)⇒ (ii). Let A⊂B To show: A−B=ϕ If possible, suppose A−B≠ϕ This means that there exists x∈A,x∉B, which is not possible as A⊂B. ∴A−B=ϕ ∴A⊂B⇒A−B=ϕ
(ii)⇒ (i). Let A−B=ϕ To show: A⊂B Let xϵA Clearly, xϵB because if x/ϵB, then A−B≠ϕ ∴A−B=ϕ⇒A⊂B
Hence, (ii)⇔(i)
(i)⇒ (iii).
Let A⊂B To show: A∪B=B Clearly, B⊂A∪B Let xϵA∪B ⇒xϵA or xϵB Case I: xϵA ⇒xϵB[∵A⊂B] ∴A∪B⊂B Case II: xϵB
Then A∪B⊂B So, A∪B=B
(iii)⇒ (i).
Conversely, let A∪B=B
To show : A⊂B Let xϵA ⇒xϵA∪B[∵A⊂A∪B] ⇒xϵB[∵A∪B=B] ∴A⊂B
Hence, (iii)⇔(i)
Now, we have to show that (i)⇔(iv). Let A⊂B Clearly A∩B⊂A Let xϵA We have to show that xϵA∩B As A⊂B,xϵB ∴xϵA∩B ∴A⊂A∩B Hence, A=A∩B Conversely, suppose A∩B=A Let xϵA ⇒xϵA∩B ⇒xϵA and xϵB ⇒xϵB ∴A⊂B Hence, (i)⇔(iv).