Let the vertices be taken as A(3, -2), B(3, 2), C(-1, 2) and D(-1, -2).
AB2=(3−3)2+(2+2)2=42=16
BC2=(3+1)2+(2−2)2=42=16
CD2=(−1+1)2+(2+2)2=42=16
DA2=(−1−3)2+(−2+2)2=(−4)2=16
AC2=(3+1)2+(−2−2)2=42+(−4)2=16+16=32
BD2=(3+1)2+(2+2)2=42+42=16+16=32
AB=BC=CD=DA=√16=4. (That is, all the sides are equal)
AC=BD=√32=4√2. (That is, the diagonals are equal.)
Hence, the points A, B, C and D form a square