Show that the following points are the vertices of a rectangle:
(i) A(-4, -1), B (-2, -4), C(4, 0) and D(2, 3)
(ii) A(2, -2), B(14, 10), C(11, 13) and D(-1, 1)
(iii) A(0, -4), B(6, 2), C(3, 5) and D(-3, -1)
(i) The given points are A (-4,-1), B(-2,-4) and C(4,0), D(2,3). Then
AB=√(−2−(−4))2+(−4−(−1))2
=√(2)2+(−3)2
=√4+9
=√13
=√13 units
BC=√(4−(−2))2+(0−(−4))2
=√(6)2+(4)2
=√36+16
=√52
=2√13 units
CD=√(2−4)2+(3−0)2
=√(−2)2+(3)2
=√4+9
=√13
=√13 units
AD=√(2−(−4))2+(3−(−1))2
=√(6)2+(4)2
=√36+16
=√52
=2√13 units
Thus AB=CD=√13 units and BC=AD=2√13 units
Also,
AC=√(4−(−4))2+(0−(−1))2
=√(8)2+(1)2
=√64+1
=√65
=√65 units
BD=√(2−(−2))2+(3−(−4))2
=√(4)2+(7)2
=√16+49
=√65
=√65 units
Also, diagonal AC = diagonal BD
Hence, the given points form a rectangle.
(ii) A (2,-2), B(14,10) and C(11,13), D(-1,1).
The given points are A (2,-2), B(14,10) and C(11,13), D(-1,1). Then
AB=√(14−2)2+(10−(−2))2
=√(12)2+(23)2
=√144+144
=√288
=12√2 units
BC=√(11−14)2+(13−10)2
=√(−3)2+(3)2
=√9+9
=√18
=3√2 units
CD=√(−1−11)2+(1−13)2
=√(−12)2+(−12)2
=√144+144
=√288
=12√2 units
AD=√(−1−2)2+(1−(−2))2
=√(−3)2+(3)2
=√9+9
=√18
=3√2 units
Thus AB=CD=12√2units and BC=AD=3√2 unit
Also,
AC=√(11−2)2+(13−(−2))2
=√(9)2+(15)2
=√81+225
=√306
=3√34 units
BD=√(−1−14)2+(1−10)2
=√(−15)2+(−9)2
=√81+225
=√306
=3√34 units
Also, diagonal AC = diagonal BD
Hence, the given points form a rectangle.
(iii) A (0,-4), B(6,2) and C(3,5), D(-3,-1).
The given points are A (0,-4), B(6,2) and C(3,5), D(-3,-1). Then
AB=√(6−0)2+(2−(−4))2
=√(6)2+(6)2
=√36+36
=√72
=6√2 units
BC=√(3−6)2+(5−2)2
=√(−3)2+(3)2
=√9+9
=√18
=3√2 units
CD=√(−3−3)2+(−1−5)2
=√(−6)2+(−6)2
=√36+36
=√72
=6√2 units
AD=√(−3−0)2+(−1−(−4))2
=√(−3)2+(3)2
=√9+9
=√18
=3√2 units
Thus AB=CD=6√2 units and BC=AD=3√2 units
Also,
AC=√(3−0)2+(5−(−4))2
=√(3)2+(9)2
=√9+81
=√90
=3√10 units
BD=√(−3−6)2+(−1−2)2
=√(−9)2+(−3)2
=√81+9
=√90
=3√10 units
Also, diagonal AC = diagonal BD
Hence, the given points form a rectangle.