Show that the following points are the vertices of a square:
(i) A(3, 2), B (0, 5), C(-3, 2) and D(0, -1)
(ii) A(6, 2), B(2, 1), C(1, 5) and D(5, 6)
(iii) A(0, -2), B(3, 1), C(0, 4) and D(-3, 1)
(i)The given points are A (3,2), B(0,5) and C(-3,2), D(0,-1). Then
AB =√(0−3)2+(5−2)2
= √(−3)2+(3)2
=√9+9
= √18
=3√2 units
BC =√(−3−0)2+(2−5)2
= √(−3)2+(−3)2
= √9+9
= √18
=3√2 units
CD = √(0+3)2+(−1−2)2
= √(3)2+(−3)2
= √9+9
=√18
=3√2 units
DA = √(0−3)2+(−1−2)2
=√(−3)2+(−3)2
= √9+9
=√18
=3√2 units
Therefore AB = BC = CD = DA =3√2 units
Also,
AC =√(−3−3)2+(2−2)2
=√(−6)2+(0)2
=√36
= 6 units
BD =√(0−0)2+(−1−5)2
=√(0)2+(−6)2
=√36
= 6 units
Thus, diagonal AC = diagonal BD
Therefore, the given points form a square.
(ii) A(6, 2), B(2, 1), C(1, 5) and D(5, 6)
Solution
The given points are A (6,2), B(2,1) and C(1,5), D(5,6). Then
AB=√(2−6)2+(1−2)2
=√(−4)2+(−1)2
=√16+1
=√17 units
BC=√(1−2)2+(5−1)2
=√(−1)2+(−4)2
=√1+16
=√17 units
CD=√(5−1)2+(6−5)2
=√(4)2+(1)2
=√16+1
=√17units
DA=√(5−6)2+(6−2)2
=√(1)2+(4)2
=√1+16
=√17 units
Therefore AB=BC=CD=DA=√17 units
Also,
AC=√(1−6)2+(5−2)2
=√(−5)2+(3)2
=√25+9
=√34units
BD=√(5−2)2+(6−1)2
=√(3)2+(5)2
=√9+25
=√34 units
Thus, diagonal AC = diagonal BD
Therefore, the given points form a square.
(iii)A(0, -2), B ( 3, 1), C (0, 4) and D (-3, 1)
Solution
The given points are P (0,-2), Q(3,1) and R(0,4), S(-3,1). Then
PQ=√(3−0)2+(1+2)2
=√(3)2+(3)2
=√9+9
=√18
=3√2units
QR=√(0−3)2+(4−1)2
=√(−3)2+(3)2
=√9+9
=√18
=3√2units
RS=√(−3−0)2+(1−4)2
=√(−3)2+(−3)2
=√9+9
=√18
=3√2units
SP=√(−3−0)2+(1+2)2
=√(−3)2+(3)2
==√9+9
=√18
=3√2units
Therefore PQ = QR = RS = SP =3√2units
Also,
PR=√(0−0)2+(4+2)2
=√(0)2+(6)2
=√36
= 6 units
QS=√(−3−3)2+(1−1)2
=√(−6)2+(0)2
=√36
= 6 units
Thus, diagonal PR = diagonal QS
Therefore, the given points form a square.