wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the following points are the vertices of a square:

(i) A(3, 2), B (0, 5), C(-3, 2) and D(0, -1)
(ii) A(6, 2), B(2, 1), C(1, 5) and D(5, 6)
(iii) A(0, -2), B(3, 1), C(0, 4) and D(-3, 1)

Open in App
Solution

(i)The given points are A (3,2), B(0,5) and C(-3,2), D(0,-1). Then

AB =(03)2+(52)2

= (3)2+(3)2

=9+9

= 18

=32 units

BC =(30)2+(25)2

= (3)2+(3)2

= 9+9

= 18

=32 units

CD = (0+3)2+(12)2

= (3)2+(3)2

= 9+9

=18

=32 units

DA = (03)2+(12)2

=(3)2+(3)2

= 9+9

=18

=32 units

Therefore AB = BC = CD = DA =32 units

Also,

AC =(33)2+(22)2

=(6)2+(0)2

=36

= 6 units

BD =(00)2+(15)2

=(0)2+(6)2

=36

= 6 units

Thus, diagonal AC = diagonal BD

Therefore, the given points form a square.

(ii) A(6, 2), B(2, 1), C(1, 5) and D(5, 6)

Solution

The given points are A (6,2), B(2,1) and C(1,5), D(5,6). Then

AB=(26)2+(12)2

=(4)2+(1)2

=16+1

=17 units

BC=(12)2+(51)2

=(1)2+(4)2

=1+16

=17 units

CD=(51)2+(65)2

=(4)2+(1)2

=16+1

=17units

DA=(56)2+(62)2

=(1)2+(4)2

=1+16

=17 units

Therefore AB=BC=CD=DA=17 units

Also,
AC=(16)2+(52)2

=(5)2+(3)2

=25+9

=34units

BD=(52)2+(61)2

=(3)2+(5)2

=9+25

=34 units

Thus, diagonal AC = diagonal BD

Therefore, the given points form a square.

(iii)A(0, -2), B ( 3, 1), C (0, 4) and D (-3, 1)

Solution

The given points are P (0,-2), Q(3,1) and R(0,4), S(-3,1). Then

PQ=(30)2+(1+2)2

=(3)2+(3)2

=9+9

=18

=32units

QR=(03)2+(41)2

=(3)2+(3)2

=9+9

=18

=32units

RS=(30)2+(14)2

=(3)2+(3)2

=9+9

=18

=32units

SP=(30)2+(1+2)2

=(3)2+(3)2

==9+9

=18

=32units

Therefore PQ = QR = RS = SP =32units

Also,
PR=(00)2+(4+2)2

=(0)2+(6)2

=36

= 6 units

QS=(33)2+(11)2

=(6)2+(0)2

=36

= 6 units

Thus, diagonal PR = diagonal QS

Therefore, the given points form a square.


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon