CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the following set of curves intersect orthogonally.

(i) y = x3 and 6y = 7 − x2
(ii) x3 − 3xy2 = −2 and 3x2y − y3 = 2
(iii) x2 + 4y2 = 8 and x2 − 2y2 = 4

Open in App
Solution

i y=x3... 16y=7-x2 ... 2From (1) and (2) we get6x3=7-x26x3+x2-7=0x=1 satisfies this.Dividing this by x-1 ,we get6x2+7x+7=0, Discriminant = 72-467=-119<0So, this has no real roots.When x=1, y=x3=1 (From (1))So, x, y = 1, 1Differentiating (1) w.r.t. x,dydx=3x2m1=dydx1, 1=3Differenntiating (2) w.r.t. x,6dxdx=-2xdxdx=-2x6=-x3m2=dydx1, 1=-13Now, m1×m2=3×-13m1×m2=-1Since, m1×m2 = -1
So, the given curves intersect orthogonally.

ii Let the given curves intersect at x1, y1x3-3xy2=-2... 13x2y-y3=2 ... 2Differentiating (1) w.r.t. x,3x2-3y2-6xydydx=0dydx=3x2-3y26xy=x2-y22xym1=dydxx1, y1=x12-y122x1y1Differenntiating (2) w.r.t. x,3x2dydx+6xy-3y2dydx=0dydx3x2-3y2=-6xydydx=-6xy3x2-3y2=-2xyx2-y2m2=dydxx1, y1=-2x1y1x12-y12Now, m1×m2=x12-y122x1y1×-2x1y1x12-y12 m1×m2=-1Since, m1×m2=-1
So, the given curves intersect orthogonally.

iii x2+4y2=8 ... 1x2-2y2=4 ... 2From (1) and (2) we get6y2=4y2=23y=23 or y=-23From (1),x2+83=8x2=163x=±43So, x, y=43, 23, 43, -23,-43, 23, -43, -23Consider point x1, y1=43, 23Differentiating (1) w.r.t. x,2x+8ydydx=0dydx=-x4ym1=dydx43, 23=-43423=-12Differenntiating (2) w.r.t. x,2x-4ydydx=0dydx=x2ym2=dydx43, 23=43223=2Now, m1×m2=-12×2 m1×m2=-1Since, m1×m2=-1Hence,, the curves are orthogonal at 43, 23.Similarly, we can see that the curves are orthogonal in each possibility of x1, y1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Second Derivative Test for Local Maximum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon