For 4 points A(0,0)B(1,1)C(5,−5) & D(6,−4) to be concyclic they should lie on the circle.
The general equation of circle is x2+y2+2gx+2fy+c=0
If A lies on circle then it should satisfy the general equation:
Hence, 0+0+0+0+c=0,
so c=0
For B lies on the circle, 1+1+2g+2f+0=0
g+f=−1 ……..(1)
For C lies on the circle, 52+(−5)2+10g−10f+0=0
10g−10f=−50 ………….(2)
Solving (1) & (2) we get g=−3 & h=2
So equation of circle is
x2+y2+2(−3)x+2(2)y+0=0
or
x2+y2−6x+4y=0 …….(3)
So, the fourth point should automatically satisfy this equation for the points to be concyclic.
Hence D lies on the circle.
So,
(6)2+(−4)2−6(6)+4(−4)=0
36+16−36−16=0
0=0
So, this is satisfying the equation, hence all four points are concyclic.