wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

Show that the four points A, B, C and D with position vectors 4^i+5^j+^k,^j^k,3^i+9^j+4^k and 4(^i+^j+^k) respectively are coplannar.

OR

The scalar product of the vector a=^i+^j+^k with a unit vector along the sum of vector b=2^i+4^j+5^k and c=λ^i+2^j+3^k is equal to one. Find the value of λ and hence find the unit vector along b+c.

Open in App
Solution

The points A, B, C and D are coplanar if ¯AB¯ACׯAD=0

Now, ¯AB=4^i6^j2^k,¯AC=^i+4^j+3^k,¯AD=8^i^j+3^k

¯AB.¯ACׯAD=∣ ∣462143813∣ ∣=4(12+3)+6(3+24)2(1+32)=0

So, A, B, C and D are coplanar

OR

Given ¯a.b+c|b+c=1 a.b+a.c=|b+c|

(^i+^j+^k).(2^i+4^j5^k)+(^i+^j+^k).(λ^i+2^j+3^k)=|2^i+4^j5^k+λ^i+2^j+3^k|

2+45+λ+2+3=(λ+2)2+62+(2)2 λ=1

Also, unit vector along b+c is given as:

b+c|b+c|=(λ+2)^i+6^j2^k(λ+2)2+62+(2)2=(1+2)^i+6^j2^k(1+2)2+62+(2)2=3^i+6^j2^k7


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance and Displacement
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon