3→a−2→b+5→c−6→d=0⇒3→a−3→b+→b−→c+6→c−6→d=0
⇒3(→a−→b)+(→b−→c)+6(→c−→d)=0
⇒3→BA+→CB+6→DC=0→(1)
We know, three points are always coplanar.
∴ Let A,B and C lie on a plane, hence we have to prove D lies on the same plane.
If D lies on the same plane, then
→DC.(→BA×→BC)=0
⇒(−→BA−→CB6).(→BA−→BC)
⇒(−→BA+→BC6).(→BA−→BC)
⇒16[−→BA.(→BA−→BC)+→BC.(→BA−→BC)]→(2)
→BA×→BC is perpendicular to →BA
⇒→BA.(→BA×→BC)=0
Similarly, →BC.(→BA×→BC)=0
∴(2)=→DC.(→BA×→BC)=0
Hence, A,B,CandD are coplanar.
WeKnow,3→a−2→b+5→c−6→d=0
⇒3→a+5→c=2→b+6→d
Dividing both sides by 8, we get
⇒3→a+5→c8=2→b+6→d8
Hence by using section formula, we can say that there exists a point of intersection between →ACand→BD.divides line AC in 5:3 and line →BD in 6:2 or 3:1.
Hence, point of intersection is 3→a+5→c8or2→b+6→d8.