5→p−2→q+6→r−9→s=0⇒5→p−5→q+3→q−3→r+9→r−9→s=0
⇒5(→p−→q)+3(→q−→r)+9(→r−→s)=0
⇒5→QP+3→RQ+9→SR=0
IfP,Q,Rand S are coplanar,
We know P,Q,R are coplanar,
∵ 3 points always lie in the same plane and hence we have to only check if S lies in this plane or not.
If S lies in the same plane then
→SR.(→QP×→QR)=0→(1)
⇒−5→QP−3→RQ9.(→QP×→QR)
⇒−19[5→QP.(→QP×→QR)−3→RQ.(→QP×(→−RQ))]
⇒−19[5→QP.(→QP×→QR)+3→RQ.(→QP×→RQ)]
→QP.(→QP×→QR)=0
and →RQ.(→QP×→RQ)=0
(∵ Dot product of perpendicular vector =0)
⇒(1)=→SR.(→QP×→QR)=0
∴ P,Q,R and S are coplanar
Now, 5→p+6→r=2→q+9→s
Dividing by 11, we get
⇒5→p+6→r11=2→q+9→s11
By section formula, we can say that point of intersection of →PRand→QS divides →PR segment in the ratio 9:2
∴ Point of intersection is 5→p+6→r11 or 2→q+9→s11