Let
→a=4^i+8^j+12^k
→b=2^i+4^j+6^k
→c=3^i+5^j+4^k
→d=5^i+8^j+5^k
For four points to be coplanar, they must satisfy the condition xa+yb+zc+td=0.
Since, x,y,z,t are scalars, so the condition should be x+y+z+t=0.
Let t=1, then,
xa+yb+zc+d=0
x(4^i+8^j+12^k)+y(2^i+4^j+6^k)+z(3^i+5^j+4^k)+5^i+8^j+5^k=0
(4x+2y+3z+5)^i+(8x+4y+5z+8)^j+(12x+6y+4z+5)^k=0
This gives,
4x+2y+3z+5=0
8x+4y+5z+8=0
12x+6y+4z+5=0
x+y+z+1=0
Solving these four equations, we get,
x=−12,y=32,z=−2,t=1.
The sum of the scalars x=−12,y=32,z=−2,t=1 is 0, therefore,
−12a+32b−2c+1d=0
Hence, the given four points are coplanar.