11
You visited us
11
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiation of Inverse Trigonometric Functions
Show that the...
Question
Show that the function
f
(
x
)
=
2
x
+
cot
−
1
x
−
log
{
x
+
√
(
1
+
x
2
)
}
is increasing
∀
R
Open in App
Solution
Given,
f
(
x
)
=
2
x
+
cot
−
1
x
−
log
{
x
+
√
(
1
+
x
2
)
}
∴
d
y
d
x
=
2
−
1
1
+
x
2
−
1
√
(
1
+
x
2
)
=
1
+
2
x
2
−
√
1
+
x
2
(
1
+
x
2
)
Since,
1
+
2
x
2
=
1
+
x
2
+
x
2
>
√
1
+
x
2
∀
x
∈
R
Hence
d
y
d
x
=
+
i
v
e
∀
x
∈
R
Therefore
f
(
x
)
is an increasing function in
(
−
∞
,
∞
)
.
Suggest Corrections
0
Similar questions
Q.
Determine the intervals of monotonicity of the function
f
(
x
)
=
2
x
+
cot
−
1
x
−
log
{
x
+
√
(
1
+
x
2
)
}
is increasing.
Q.
Show that
f
(
x
)
=
2
x
+
c
o
t
−
1
x
+
l
o
g
(
√
1
+
x
2
−
x
)
is increasing in R.
Q.
f(x) = 2x − tan
−1
x − log
x
+
x
2
+
1
is monotonically increasing when
(a) x > 0
(b) x < 0
(c) x ∈ R
(d) x ∈ R − {0}
Q.
f
(
x
)
=
2
x
−
tan
−
1
x
−
log
(
x
+
√
1
+
x
2
)
(
x
>
0
)
is increasing in
Q.
Show that the function
f
(
x
)
=
x
2
+
3
x
2
+
3
x
+
107
is increasing for all
R
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Explore more
Differentiation of Inverse Trigonometric Functions
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app