f(x)=3x+25x+3,x≠−35
One One:
3x1+25x1+3=3x2+25x2+3
⇒15x1x2+9x1+10x2+6=15x1x2+9x2+10x1+6
⇒x2=x1
f is one-one
Onto:
Let y=3x+25x+3
⇒5xy+3y=3x+2
⇒(5y−3)x=2−3y
⇒x=2−3y5y−3
Now, f(2−3y5y−3)=3(2−3y5y−3)+25(2−3y5y−3)+3
=6−9y+10y−610−15y+15y−9
=y
f is onto
and f−1(x)=2−3x5x−3