Use the concept of continuity of a function at a point
We have,
F(x)=|sinx+cosx|
If F(a)=limx→aF(x),
then F(x) is continuous at x=a limx→πF(x)=limx→π(sinx+cosx) =|sinπ+cosπ| =|0−1|=1 Also, F(π)=|sinπ+cosπ|=|0−1|=1 ∴F(π)=limx→πf(x)
Hence F(x) is continuous at x=π