wiz-icon
MyQuestionIcon
MyQuestionIcon
8
You visited us 8 times! Enjoying our articles? Unlock Full Access!
Question

Show that the function f(x) = cot-l(sinx + cosx) is decreasing on 0,π4 and increasing on π4,π2.

Open in App
Solution

We have,fx=cot-1sinx+cosxf'x=-11+sinx+cosx2×cosx-sinx=sinx-cosx1+sin2x+cos2x+2sinxcosx=sinx-cosx1+1+2sinxcosx=sinx-cosx2+2sinxcosx=12×sinx-cosx1+sinxcosxFor fx to be decreasing, we must havef'x<012×sinx-cosx1+sinxcosx<0sinx-cosx1+sinxcosx<0sinx-cosx<0 In first quadrantsinx<cosxtanx<10<x<π4So, fx is decreasing on 0,π4.For fx to be increasing, we must havef'x>012×sinx-cosx1+sinxcosx>0sinx-cosx1+sinxcosx>0sinx-cosx>0 In first quadrantsinx>cosxtanx>1π4<x<π2So, fx is increasing on π4,π2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon