Given function,
y=Asin2x+Bcos2x …….. (1)
Differentiating this equation with respect to x and we get,
dydx=Addxsin2x+Bddxcos2x
dydx=A2cos2x+B(−2sin2x)
dydx=2Acos2x−2Bsin2x
Again Differentiating this equation with respect to x and we get,
d2ydx2=2Addxcos2x−2Bddxsin2x
d2ydx2=2A(−2sin2x)−2B(2cos2x)
d2ydx2=−4Asin2x−4Bcos2x
d2ydx2=−4(Asin2x−Bcos2x)
d2ydx2=−4y by equation (1)
d2ydx2+4y=0
Hence proved.