A first‐order differential equation is said to be homogeneous if
M(x,y) and
N(x,y) are both homogeneous functions of the same degree.Here degree of
x and
y are same.Hence the above differential equation is homogeneous.
We have (x−y)dydx=x+2y
dydx=x+2yx−y
Let y=vx⇒dydx=v+xdvdx where v is a function of x
⇒v+xdvdx=x+2vxx−vx
⇒v+xdvdx=1+2v1−v by cancelling the common terms in the numerator and denominator
⇒xdvdx=1+2v1−v−v
⇒xdvdx=1+2v−v+v21−v
⇒(1−v)dv1+v+v2=dxx
⇒∫(1−v)dv1+v+v2=∫dxx
⇒−∫(v−1)dvv2+2×v×12+(12)2−(12)2+1=∫dxx by completing square method.
⇒−∫(v−1)dv(v+12)2−14+1=∫dxx
⇒−∫(v−1)dv(v+12)2−(√32)2=∫dxx
⇒∫vdv(v+12)2−(√32)2−∫dv(v+12)2−(√32)2=∫dxx
Let t=(v+12)2+(√32)2⇒dt=2(v+12)
⇒−12∫2(v+12−12)dv(v+12)2−(√32)2−∫dv(v+12)2−(√32)2=∫dxx
⇒−12∫2(v+12)dv(v+12)2+(√32)2+(14−1)∫dv(v+12)2+(√32)2=∫dxx
⇒−12∫dtt−3412tan−1⎛⎜
⎜
⎜
⎜⎝v+12√32⎞⎟
⎟
⎟
⎟⎠=lnx+c where c is the constant of integration
⇒−lnt−3tan−1(2v+1√3)=2lnx+2c where 2c is the constant of integration
⇒lnt+3tan−1(2v+1√3)+2lnx=−2c where k=−2c is the constant of integration
⇒ln⎛⎝(v+12)2+(√32)2⎞⎠+3tan−1⎛⎜
⎜⎝2yx+1√3⎞⎟
⎟⎠+2lnx=k where k=−2c is the constant of integration where t=(v+12)2+(√32)2 and v=yx