Show that the given differential equation is homogeneous and then solve it.
{xcos(yx)+ysin(yx)}ydx={ysin(yx)−xcos(yx)}xdy
Given, {xcos(yx)+ysin(yx)}ydx={ysin(yx)−xcos(yx)}xdy
⇒dydx=y{xcosyx+ysinyx}x{ysinyx−xcosyx}...(i)
Thus, the given differential equations is homogeneous.
So, put y=vx
dydx=v+xdvdx∴v+xdvdx=vx(xcosv+vxsinv)x(vxsinv−xcosv)⇒v+xdvdx=v(cosv+vsinv)vsinv−cosv⇒xdvdx=vcosv+v2sinvvsinv−cosv−v⇒xdvdx=vcosv+v2sinv−v2sinv+vcosvvsinv−cosv⇒xdvdx=2vcosvvsinv−cosv⇒(vsinv−cosvvcosv)dv=2xdx⇒(tanv−1v)dv=2xdx
On integrating both sides, we get ∫(tanv−1v)dv=∫2dxx
⇒∫tanvdv−∫1vdv=2∫1xdx⇒−log|cosv|−log|v|=2log|x|+C⇒log|vcosv|+2log|x|=−C (∵logm+logn=logmn)
log[(vcosv)x2]=−C⇒(vcosv)x2=e−c ∵logex=m⇒em=x)
⇒x2vcosv=A (where, A=e−c)
⇒x2yxcosyx=A⇒xycosyx=A
This is the required solution of the given differential equation.