Show that the given differential equation is homogeneous and then solve it.
xdydx−y+xsin(yx)=0
Given, dydx=yx−sinyx ...(i)
Thus , the given differential equations is homogeneous
So, put yx=v⇒y=vx⇒dydx=v+xdvdx
Then, Eq. (i) becomes v+xdvdx=v−sinv⇒cosecvdv=−1xdx
On integrating both sides, we get
∫cosecv dv=−∫dxx⇒log|cosecv−cotv|=−log|x|+A (∵∫cosecx dx=log|cosecx−cotx|)
⇒log|(cosecv−cotv)|+log|x|=A⇒log|(cosecv−cotv)x|=A⇒|x(cosecv−cotv)|=eA⇒x(1sinv−cosvsinv)≃eA⇒x(1−cosvsinv)=eA⇒x(1−cosv)=eAsinv⇒x(1−cos(yx))=Csin(yx) Put C=eA and v=vx
This is the required solutions of given differential equation.