Show that the given differential equation is homogeneous and then solve it.
ydx+xlog(yx)dy−2xdy=0
Given, ydx+xlog(yx)dy−2xdy=0
⇒yx+log(yx)dydx−2dydx=0⇒dydx=yx2−logyx ...(i)
Thus, the given differential equation is homogeneous.
So, put yx=vi.e.,y=vx⇒dydx=v+xdvdx
Then, Eq.(i) becomes v+xdvdx=v2−logv⇒xdvdx=v2−logv−v⇒xdvdx=v−2v+vlogv2−logv⇒xdvdx=vlogv−v2−logv⇒2−logvvlogv−vdv=1xdx⇒1−(logv−1)v(logv−1)dv=1xdx⇒(1v(logv−1)−(logv−1)v(logv−1))dv=1xdx
On integrating both sides, we get
∫(1v(logv−1)−1v)dv=∫dxx⇒∫1v(logv−1)dv−∫1vdv=∫dxx
Let logv-1=t ⇒1vdv=dt
∴∫dtt−∫1vdv=∫dxx)
⇒log|t|−log|v|=log|x|+logC⇒log|logv−1|−log|v|=log|x|+logC [∵t=logv−1]
⇒log|logv−1|−log|v|−log|x|=logC⇒log∣∣logv−1vx∣∣=logC [∵logmn=logm−logn]
⇒∣∣logv−1vx∣∣=C⇒logv−1vx=C⇒log(yx)−1y=C [∵v=y/x]
⇒log(yx)−1=Cy
This is the required solution of the given differential equation.