Let, R be the radius of the sphere, h be the height and x be the diameter of the cylinder.
Use the Pythagoras theorem in ΔABC,
( CB ) 2 + ( AB ) 2 = ( AC ) 2 h 2 + x 2 = ( R+R ) 2 x 2 =4 R 2 − h 2 (1)
The volume of cylinder is,
V=π ( x 2 ) 2 ×h V=π( 4 R 2 − h 2 4 )×h V=4πh R 2 − π h 3 4
Differentiate above equation with respect to h,
dV dh =4π R 2 d( h ) dh − π 4 d( h 3 ) dh =π R 2 − 3π 4 h 2
Equate derivative of the volume is zero.
dV dh =0 π R 2 − 3π 4 h 2 =0 h= 2R 3
The value of d 2 V d h 2 ,
dV dh =π R 2 − 3π 4 h 2 d 2 V d h 2 = −3πh 4
Substitute the value of h= 2R 3 ,
d 2 V d h 2 = −3πh 4 d 2 V d h 2 = −3π( 2R 3 ) 4 <0
So, volume is maximum when h= 2R 3 .
From equation (1),
x 2 =4 R 2 − h 2 x 2 =4 R 2 − ( 2R 3 ) 2 x 2 = 8 3 R 2
The maximum value of the volume is,
V=π ( x 2 ) 2 h
Substitute the value of x 2 and h.
V=π ( x 2 ) 2 h = 16π R 3 12 3 = 4π R 3 3 3 cubic unit
Thus, the maximum volume is 4π R 3 3 3 cubic unit.