Let
R,h and
x be the radius of the sphere, height of cylinder and radius of cylinder respectively.
Now, in △ABC
AC2=AB2+BC2
(2R)2=h2+(2x)2
⇒x2=4R2−h24
Let V be the volume of cylinder.
V=πx2h
⇒V=π(R2−h24)h
⇒V=πR2h−πh34.....(1)
Differentiating above equation w.r.t. h, we get
dVdx=πR2−3πh24.....(2)
Putting dVdh=0, we have
πR2−3πh24=0
⇒h=2R√3
Differentiating equation (2) w.r.t. h, we have
d2Vdx2=−3πh2
At h=2R√3
d2Vdx2=−3π2(2R√3)=−√3πR<0
Thus at h=2R√3, the volume will be maximum.
∵R=20(Given)
∴h=2×20√3=40√3cm
Thus the height of the cylinder of maximum volume that can be inscribed in a sphere of radius 20cm is 40√3cm.
Hence proved.
Now, substituting the value of R and h in equation (1), we have
V=π(20)2×40√3−π(40√3)34
⇒V=2π√3(20)3−2π3√3(20)3=4π(20)33√3cm3
Hence the maximum volume will be 4π(20)33√3cm3.