Given: Radius of the sphere = R
Let h be the diameter of the base of the inscribed cylinder.
Then,
h2+x2=(2R)2
h2+x2=4R2----- (1)
Volume of the cylinder = πr2h
V=π(x22)2h
=π(x44)h
V=14πx2h
Substitute the value of x2 we get
V=14πh(4r2−h2)
From (1), x2=4R2−h2
V=πR2h−14πh3
Differentiating with respect to x,
V=πR2h−14πh3
dVdh=πR2−34πh3
=π[R2−34h2]
dVdh=0
π[R2−34h2]=0
R2=34h2]
h=2R√3
Also, d2Vdh2=−34.2πh
=−32.πh
At h=2R√3
d2Vdh2=−32.π2R√3
⇒V is maximum at h=2R√3
Maximum volue at h=2R√3
=14π[2R√3][4R2−4R23]
=πR2√3[8R23]
=4πR33√3 Sq.units.