Let (√3+1)2n=(4+2√3)n=2n(2+√3)n=I+f ...... (i)
where I and f are its integral & fractional parts respectively
⇒0<f<1
Now, 0<√3−1<1
0<(√3−1)2n<1
Let (√3+1)2n=(4−2√3)n=2n(2−√3)n=f′ ...... (ii)
0<f′<1
Adding (i) and (ii)
I+f+f′=(√3+1)2n+(√3−1)2n
=2n[(2+√3)n+(2−√3)n]=2.2n[nC02n+nC22n−2(√3)2+...]
I+f+f′=2n+1k (where k is a positive integer)
0<f+f′<2⇒f+f′=1
I+1=2n+1k.
I+1 is the integer just above (√3+1)2n and which is divisible by 2n+1.