wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the latus rectum of the parabola (a2+b2)(x2+y2)=(bx+ayab)2 is 2ab÷a2+b2.

Open in App
Solution

Given equation of the parabola: (a2+b2)(x2+y2)=(bx+ayab)2
Standard equation of parabola is of the form: (distancefromAxis)2=±(LatusRectum)×(distancefromtangentatVertex)...eqnI, where Axis and tangent at Vertex are equations of some mutuallyperpendicular lines.
(a2+b2)(x2+y2)=(bx+ayab)2
a2x2+a2y2+b2x2+b2y2=b2x2+a2y2+a2b2+2abxy2a2by2ab2x
a2x2+b2y22abxy=a2b22a2by2ab2x
(axby)2=ab(2bx+2ayab)
(a2+b2)×(axbya2+b2)2=ab×2(a2+b2)×⎜ ⎜2bx+2ayab(2b)2+(2a)2⎟ ⎟
(axbya2+b2)2=2ab(a2+b2)×⎜ ⎜2bx+2ayab(2b)2+(2a)2⎟ ⎟...eqnII
Comparing eqnIandeqnII gives,
LatusRectum=2aba2+b2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Parabola
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon