x2+3y2=12⇒x212+y24=1(÷ by 12)
Here a2=12,b2=4
∴ the condition for y=mx+c to be a tangent to the ellipse x2a2+y2b2=1 is c2=a2m2+b2
x−y+4=0⇒y=x+4
Here, m=1,c=4⇒c2=42=16
a2m2÷b2=12(1)2+4=12+4=16
∴c2=a2+b2=16
Hence, x−y+4=0 is a tangent to the ellipse
∴ The point of contact =(a2mc,b2c)=(−12(1)4,44) =(−3,1)