L1:x−12=y−23=z−34L2:4x−3y+1=0=5x−3z+2Let lmn be directions of L2
∴4l−3m=0−(i)∴5l−3n=0−(ii)
Applying cramer's rule for (i) & (ii),
l9=−m−12=n+15∴(l,m,n)=(3,4,+5)
Let (x,y,z) satisfy l2
∴ By hit and trail we get (x,y,z)=(0,13,23)
∴L2:x−03=y−134=z−23+5=r
Say 3r,4r+13,+5r+23 is point of intersection hence it must satisfy L1
3r−12=4r+13−23=+5r+23−34r=−13
∴Point of intersection =(−1,−1,−1)