x−41=y+3−4=z+17=λ⇒x=λ+4,y=−4λ−3,z=7λ−1.....(i)x−12=y+1−3=z+108=μ⇒x=2μ+1,y=−3μ−1,z=8μ−10....(ii)
Comapring x from (i) and (ii)
⇒λ+4=2μ+1⇒2μ−λ=3.......(iii)
Comparing y from (i) and (ii)
⇒−4λ−3=−3μ−1⇒3μ−4λ=2.....(iv)
Solving (iii) and (iv)
⇒λ=1,μ=2
Substituing λ and in (i)
⇒x=1+4,y=−4−3,z=7−1⇒x=5,y=−7,z=6
So the point of intersection is (5,−7,6)