Compare the given lines with x−x1a1=y−y1b1=z−z1c1 and x−x2a2=y−y2b2=z−z2c2condition for two lines to intersect is
∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣=0
Now,
∣∣
∣∣−10−(−1)−1−(−3)1−4−10−11−1−34∣∣
∣∣=0
∣∣
∣∣−92−3−10−11−1−34∣∣
∣∣=0
9+78−87=0
0=0
Hence the given lines intersect to each other.
Coordinate solutions =(x,y,z)
comparing x,yand z termsin both the lines,then
x+1−10=x+10−1 −−> x=−11
y+1−1=y+1−3 −−> y=−4
z−41=z−14 −−> z=5
Hence the coordinate solutions=(x,y,z)=(−11,−4,5)