x^i+y^j+z^k=(1+λ)^i+(1−λ)^j+(1+λ)^k
x^i+y^j+z^k=(0+2μ)^i+(4−μ)^j+(2+3μ)^k
⇒ 1+λ=2μ ...(i)
1−λ=4−μ ...(ii)
and 1+λ=2+3μ ...(iii)
⇒ λ=2μ−1
Put the value ofλ in eq. (ii), we have
1−2μ+1=4−μ
−μ=2
μ=−2
or λ=2(−2)−1
= −4−1
= −5
Substitute the value of λ and μ in eq. (iii), we have
1−5=2+3(−2)
−4=2−6
−4=−4 which is true
Hence, they are coplanar.
Point of intersection is (−4, 6,−4)
Equation of plane is
a(x+4)+b(y−6)+c(z+4)=0 ...(i)
a−b+c=0 ...(ii)
2a−b+3c=0 ...(iii)
From (ii) and (iii), we have
a−3+1=b2−3=c−1+2
a−2=b−1=c1
or a2=b1=c−1
From (i), we have
2(x+4)+y−6−(z+4)=0
⇒ 2x+8+y−6−z−4=0
⇒ 2x+y−z−2=0