Consider the given equation.
2l+2m−n=0
n=2m+2n
Substitute this value in the second equation.
m(2l+2m)+l(2l+2m)+lm=0
2lm+2m2+2l2+2lm+lm=0
2m2+5lm+2l2=0
(m+2l)(2m+l)=0
m=−2l or −l2
Now, put l=1.
m=−2 or −12
n=−2 or 1
Therefore,
d1=(1,−2,−2)
d2=(1,−12,1)
Now,
d1⋅d2=1×1+(−2)×(−12)+(−2)×(1)
d1⋅d2=1+1−2
d1⋅d2=0
Hence, both the lines are perpendicular to each other.