The locus of the point z satisfying the condition arg (z−1z+1=π3) is the circle x2+y2−2√3y−1=0.
Open in App
Solution
Substituting z=x+iy, we have argz−1z+1=π3 or arg x+iy−1x+iy+1=π3 ∴tan−1yx−1−tan−1yx+1=π3 ∵Argz1z2=Argz1−Argz2 or tan−1yx−1−yx+11+y2x2−1=π3 or 2yx2+y2−1=tanπ3=√3 or x2+y2−(2/√3)y−1=0,i.e.circle.