We need to prove B'AB is symmetric if A is symmetric and B'AB is skew symmetric if A is skew-symmetric.
(i)Consider A to be a symmetric matrix, then
A'=A (1)
Consider,
( B'AB )'=( AB )'( B' )' =B'A'B [ ( AB )'=B'A' ] =B'AB [ from (1) ]
Hence, B'AB is a symmetric matrix.
(ii) Consider A be a skew-symmetric matrix, then
A'=−A (2)
Consider,
( B'AB )'=( AB )'( B' )' =B'A'B =B'( −A )B =−B'AB
Thus, B'AB is a skew-symmetric matrix.
Hence, matrix B'AB is symmetric if A is symmetric or skew symmetric if A is skew symmetric.