Show that the middle term in the expansion of (1+x)2n is 1.3.5⋯(2n−1)n!.2n.Xn,where nϵN.
Clearly, the number of terms in th expansion of(1+x)2n is (2n + 1).
∴middle term =(2n2+1)th term = (n + 1)th term Tn+1Now,Tn+1=2nCn.Xn=(2n)!(n!)×(n!).xn=1.2.3.4⋯(2n−2)(2n−1)(2n)(n!)×(n!).xn=[1.3.5⋯(2n−3)(2n−1)]×[2.4.6⋯(2n−2)(2n)](n!)(n!).xn=[1.3.5⋯(2n−1)]×2n[1.2.3⋯(n−1).n](n!)×(n!).xn=[1.3.5⋯(2n−1)]×2n×xn(n!)
Hence the middle term in the given expansion is
1.3.5⋯(2n−1)×2n×xn(n!)