show that: The modulus and argument of the complex number z1=z2−z, if z=cosϕ+isinϕ. is 2|sinϕ/2|,(3π+3ϕ2).
Open in App
Solution
z=eiϕ Hence z2−z =e2iϕ−eiϕ =cos2ϕ+isin2ϕ−cosϕ−isinϕ =−2sin3ϕ2.sinϕ2+i(2sinϕ2.cos3ϕ2) =2sinϕ2[−sin3ϕ2+icos3ϕ2] =2sinϕ2[cos(π2+3ϕ2)+isin(π2+3ϕ2)] or 2sinϕ2[cos(3π2+3ϕ2)+isin(3π2+3ϕ2)] depending on the value of ϕ. Hence |z|=2|sinϕ2| And arg(z)=3π2+3ϕ2 or π2+ϕ2 depending on the value of ϕ.