Show that the normal at any point θ to the curve x=a cos θ+a θ,y=a sin θ−a θ cos θ is. at a constant distance from the origin.
The given curve is x=a cos θ+a θ sin θ,y=a sin θ−a θ cos θ on differentiating w.r.t. θ we get
dxdθ=−a sin θ+a[θ cos θ+sin θ]=a θ cos θ
and dydθ=a cos θ−a[θ(−sin θ)]+cos θ]=a cos θ+a θ sin θ−a cos θ=a θ sin θ
∴ Slope of the tangent at θ,dydx=dydθ×dθdx=aθ sin θaθ cos θ=tan θ
Slope of the normal at θ=−1dydx=−1tan θ=−cot θ
The equation of the normal at a given point (x, y) is given by
y−[a sin θ−a θ cos θ]=−cot θ[x−(a cos θ+a θ sin θ)]⇒y−[a sin θ−a θ cos θ]=−cos θsin θ[x−(a cos θ+a θ sin θ)]⇒y sin θ−a sin2θ+a θ sin θ cos θ=−x cos θ+a cos2θ+a θ sin θ cos θ⇒x cos θ+y sin θ=a(sin2θ+cos2θ)⇒x cos θ+y sin θ=a⇒x cos θ+y sin θ−a=0
Now, the perpendicular distance of the normal from the origin is = |−a|√cos2θ+sin2θ=|−a|√1=|−a|(∵cos2θ+sin2θ=1)
Which is independant of θ. Hence, the perpendicular distance of the normal from the origin is constant