wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the normal at any point θ to the curve x=a cos θ+a θ,y=a sin θa θ cos θ is. at a constant distance from the origin.

Open in App
Solution

The given curve is x=a cos θ+a θ sin θ,y=a sin θa θ cos θ on differentiating w.r.t. θ we get
dxdθ=a sin θ+a[θ cos θ+sin θ]=a θ cos θ
and dydθ=a cos θa[θ(sin θ)]+cos θ]=a cos θ+a θ sin θa cos θ=a θ sin θ
Slope of the tangent at θ,dydx=dydθ×dθdx=aθ sin θaθ cos θ=tan θ
Slope of the normal at θ=1dydx=1tan θ=cot θ
The equation of the normal at a given point (x, y) is given by
y[a sin θa θ cos θ]=cot θ[x(a cos θ+a θ sin θ)]y[a sin θa θ cos θ]=cos θsin θ[x(a cos θ+a θ sin θ)]y sin θa sin2θ+a θ sin θ cos θ=x cos θ+a cos2θ+a θ sin θ cos θx cos θ+y sin θ=a(sin2θ+cos2θ)x cos θ+y sin θ=ax cos θ+y sin θa=0
Now, the perpendicular distance of the normal from the origin is = |a|cos2θ+sin2θ=|a|1=|a|(cos2θ+sin2θ=1)
Which is independant of θ. Hence, the perpendicular distance of the normal from the origin is constant


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Interpretation of a Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon