Equation of line is a¯¯¯z+¯¯¯az+b=0
Put z=x+iy
then equation a(x−iy)+¯¯¯a(x+iy)+b=0
∴(a+¯¯¯a)x+(¯¯¯a−a)iy+b=0
Let d=d1+id2
Distance of the line from d=|(a+¯¯¯a)d1+(¯¯¯a−a)id2+b|√a+¯¯¯a2+[(¯¯¯a−a)i]2
=|a(d1−id2)+¯¯¯a(d1+id2)+b|√(a+¯¯¯a)2−(¯¯¯a−a)2
=|a¯¯¯d+¯¯¯ad+b|√4¯¯¯aa
=|a¯¯¯d+¯¯¯ad+b|√4|a|2
=|a¯¯¯d+¯¯¯ad+b|2|a|
Ans: 1