wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the perpendicular from the origin upon the straight line joining the points (acosα,asinα) and (acosβ,asinβ) bisects the distance between them.

Open in App
Solution

Equation of line joining (acosα,asinα) and (acosβ,asinβ) is

yasinα=(asinβasinαacosβacosα)(xacosα)

yasinα=(sinβsinαcosβcosα)(xacosα)

yasinα=⎜ ⎜ ⎜2cosβ+α2sinβα22sinβ+α2sinβα2⎟ ⎟ ⎟(xacosα)

yasinα=⎜ ⎜ ⎜cosβ+α2sinβ+α2⎟ ⎟ ⎟(xacosα)

sinβ+α2yasinαsinβ+α2=cosβ+α2x+acosαcosβ+α2

xcosβ+α2+ysinβ+α2=a(cosαcosβ+α2+sinαsinβ+α2)

xcosβ+α2+ysinβ+α2=a(cos(αβ+α2))

xcosβ+α2+ysinβ+α2=acosαβ2

Let the length of perpendicular from origin be p

p=0(cosβα2)0(sinβα2)acosαβ2cos2β+α2+sin2β+α2p=acosαβ21p=acosαβ2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon