Show that the perpendicular let fall from any point on the straight line 2x+11y−5=0 upon the two straight lines 24x+7y=20 and 4x−3y−2=0 are equal to each other.
Let (h, k) be the point on the line 2x+11y−5=0
⇒2h+11k−5=0……(1)
Let p and q be length of perpendicular from (h, k) on lines 24x+7y−20=0 and 4x−3y−2=0 so,
p = q
24h+7k−20√(24)2+(7)2=4h−3k−2√(4)2+(−3)2
24h+7k−20√576+49=4h−3k−2√25
24h+7k−2025=4h−3k−25
2h+7k−20=20h−15k−10
4h=−22k+10
4(5−11k2=−22k+10) [Using equation (1)]
10−22k=−22k+10
LHS = RHS
So,
Distance 24x+7y=20 and 4x−3y−2=0 from any point on the line 2x+11y−5=0 is equal.