2x+11y=5
Let (h,k) be any point on the line
2h+11k=52h=5−11k⇒h=5−11k2
So any point on the line will be of form P(5−11k2,k)
24x+7y−20=0...........(i)
Let p1 be the perpendicular from P to (i)
p1=∣∣∣24(5−11k2)+7k−20∣∣∣√(24)2+72p1=|60−132k+7k−20|√625p1=|40−125k|25p1=|8−25k|5
4x−3y−2=0.......(ii)
Let p2 be the perpendicular from P to (ii)
p2=∣∣∣4(5−11k2)−3k−2∣∣∣√42+32p2=|10−22k−3k−2|√25p2=|8−25k|5
Clearly we get p1=p2
Hence proved