Show that the points (3, -2), (1, 0), (-1, -2) and (1, -4) are concylic.
We have,
P=(3,−2),Q=(1,0),R(−1,−2) and S=(1,−4)
let us consider A=x2+y2+2gx+2fy+c=0
Passes through P, Q and R
∴9+4+6g−4f+c=0 …(ii)1+0+2g−0+c0 …(iii)1+4−2g−4f+c=0 …(iv)
Solving (ii), (iii) and (iv) we get,
g=−1,f=2 and c=1
from (i)
The required equation of circle is
x2+−2x+4y+1=0 …(v)
Clearly s = (1, -4) satisfy (v)
Thus, P, Q, R and S are concyclic