Let the point A(3,2), B(-5,-5), C(2,-3) and D(4,4) be the vertices of a rhombus ABCD.
We know that all the sides of a rhombus ABCD are equal.
So by distance formula,
Distance between two points = √(x2−x1)2+(y2−y1)2
AB=√(−5+3)2+(−5−2)2=√4+49=√53.
BC=√(2+5)2+(−3+5)2=√49+4=√53.
CD=√(4−2)2+(4+3)2=√4+49=√53.
DA=√(4+3)2+(4−2)2=√49+4=√53.
∴AB=BC=CD=AD
Hence, ABCD is a rhombus (Proved)
Area of the rhombus ABCD
=12∣(x1y2+x2y3+x3y4+x4y1)−(x2y1+x3y2+x4y3+x1y4)∣
=12∣(15+15+8+8)−(−10−10−12−12)
=12∣46+44∣=12∣90∣=45 sq. units