Show that the points A(1, 2, 3), B(-1, -2, -1), C(2, 3, 2) and D (4, 7, 6) are the vertices of a parallelogram ABCD, but not a rectangle.
AB = √(−1−1)2+(−2−2)2+(−1−3)
=√4+16+16
=6 units
BC =√(2+1)2+(3+2)2+(2+1)2
=√9+25+9
=√43 units
CD =√(4−2)2+(7−3)2+(6−2)2
√4+16+16
6 units
DA =√(1−4)2+(2−7)2+(3−6)2
√9+25+9
√43 units
AC =√(2−1)2+(3−2)2+(2−3)2
√1+1+1
√3 units
BD =√(4+1)2+(7+2)2+(6+1)2
√25+81+49
√155 units
Since,
AB = DC and BC = DA
So,
ABCD is a parallelogram
AB2+BC2=36+43=97
AC=√3
∴AB2+BC2≠AC2 i.e.∠B is not a right
angle. ABCD is not a rectangle.